

Engineered Conversion and Stabilization Pathways for Biomass Carbon

June 28th, 2022

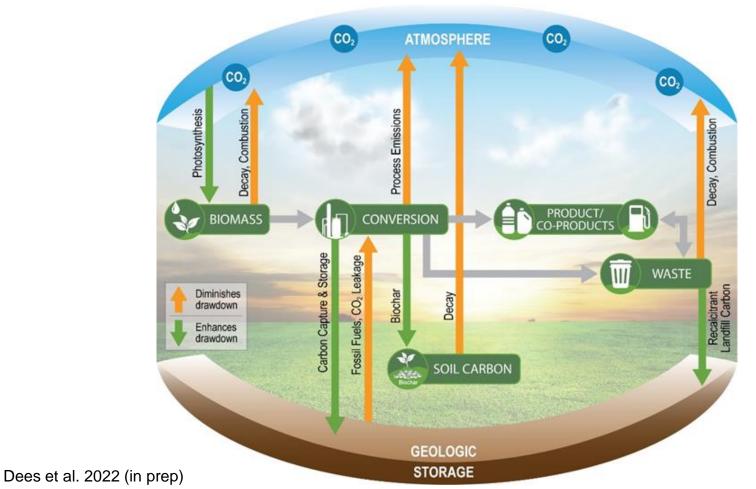
Joe Sagues
Assistant Professor
Department of Biological & Agricultural Engineering
North Carolina State University

Estimated Global Potential of CDR in 2050

CDR Pathway	Gigatons of CO ₂ per year
Afforestation and reforestation	0.5 - 3.6
BECCS	0.5 - 5.0
Biochar	0.5 - 2.0
Enhanced weathering	2.0 - 4.0
Direct air capture	0.5 - 5.0
Soil carbon sequestration	Up to 5.0

Biomass Carbon Removal and Storage (BiCRS)

- Use biomass to remove CO₂ from the atmosphere
- Store that CO₂ underground or in long-lived products
- Do no damage to—and ideally promote—food security, rural livelihoods, biodiversity conservation and other important values


BECCS → BiCRS

Bioenergy → Biocarbon

Paradigm shift?

NC STATE UNIVERSITY

4

The Bioeconomy

The bioeconomy encompasses the production of renewable biological resources from the agricultural, forestry, and aquaculture sectors, and the conversion of these renewable resources and waste streams into value added products, such as food, feed, bioenergy, and other bio-based products

The Bioeconomy

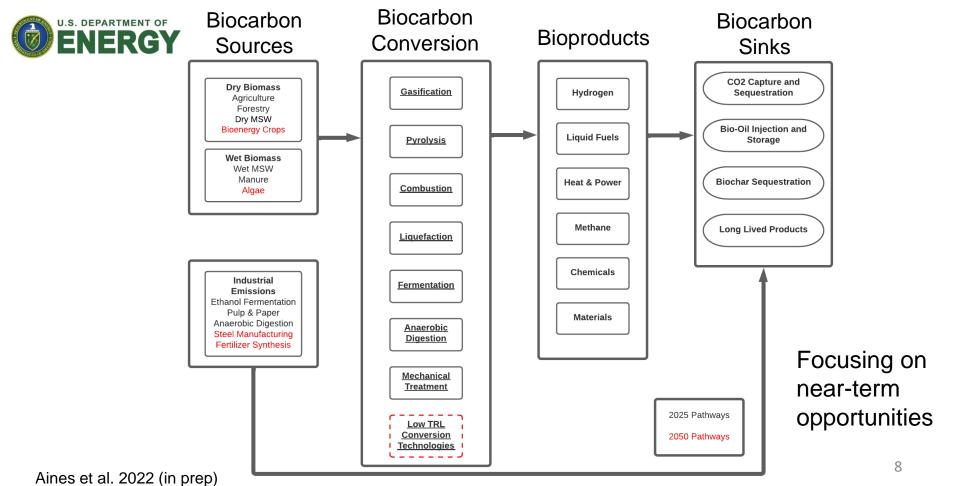
In the US: more than 22% of total economic activity, valued at more than \$1 trillion, and employs ~28% of the workforce

Approximately 30 – 50% of mass in food and agricultural systems is lost between biomass cultivation and end product sale

2016 BILLION-TON REPORT

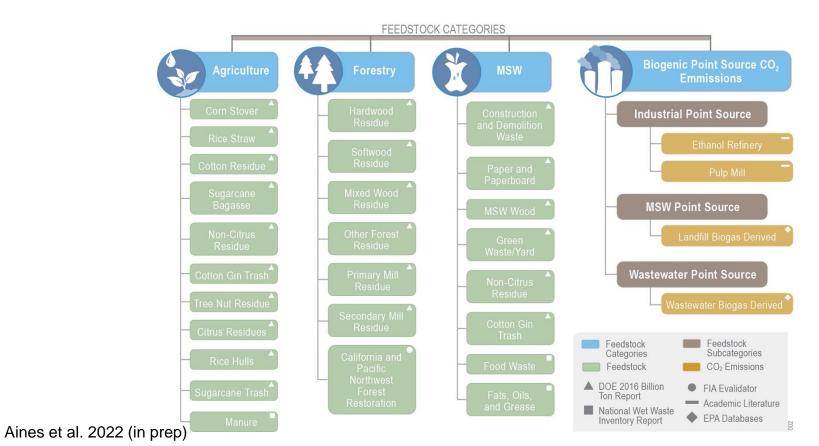
Advancing Domestic Resources for a Thriving Bioeconomy

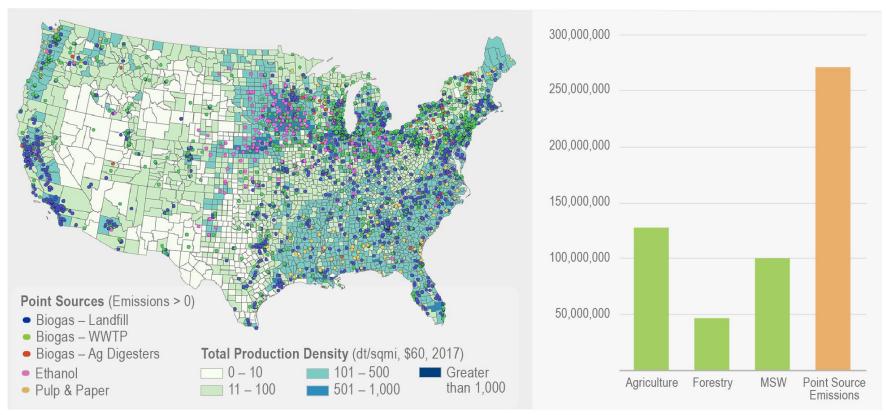
Volume I | July 2016



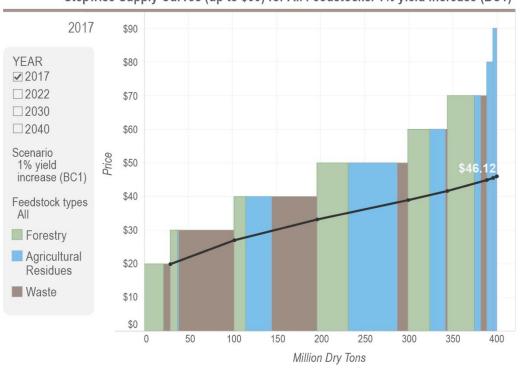
1 billion tons of biomass per year by 2040
Assume 50% carbon
500 million tons of carbon per year

1.85 billion tons of biogenic CO₂ fixation per year
Not including the carbon flows in the existing bioeconomy...


NC STATE UNIVERSITY



Biocarbon Sources


Biocarbon Sources

Biocarbon Sources

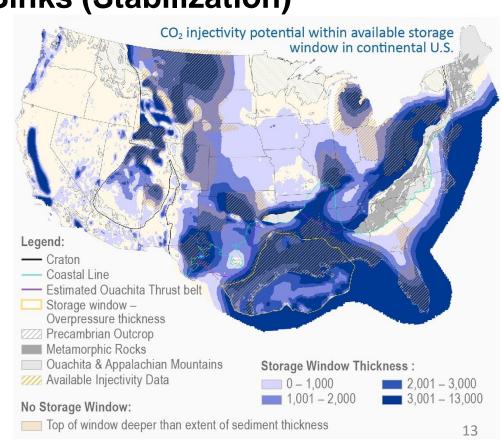
Stepwise Supply Curves (up to \$90) for All Feedstocks. 1% yield increase (BC1)

300 million tons of biomass waste per year @ < \$50 per ton

~ 550 million tons of biogenic CO₂ fixation per year

NC STATE UNIVERSITY

General Description	Biomass Criteria	Feedstocks	BiCRS Technology
WET, HIGH ASH	Moisture content: >25 wt.% Ash content: >10 wt.%	Sewage sludge	Anaerobic digestion, hydrothermal processing
WET, LOW ASH	Moisture content: >25 wt.% Ash content: <10 wt.%	Energy sorghum, green waste/yard, citrus residue, food waste, manure	Anaerobic digestion, hydrothermal processing, fermentation
DRY, HIGH ASH	Moisture content: <25 wt.% Ash content: >10 wt.%	Rice straw, tree nut residue, citrus residue, rice hulls, sugarcane trash, MSW wood	Combustion
DRY, LOW ASH, LOW LIGNIN	Moisture content: <25 wt.% Ash content: <10 wt.% Lignin content: <15 wt.% Holocellulose > 50%	Corn stover, switchgrass, sorghum, sugarcane bagasse, non-citrus residue	Hydrolysis + fermentation, gasification, pyrolysis
DRY, LOW ASH, HIGH LIGNIN	Moisture content: <25 wt.% Ash content: <10 wt.% Lignin content: >15 wt.%	Hardwood residue, softwood residue, mixed wood residue, other forest residue, Primary mill residue, secondary mill residue, cotton gin trash, tree nut residue construction and demolition waste, paper and paperboard,	Gasification, pyrolysis
HIGH OIL	Oil content: >30 wt. %	Algae, fat, oils, and grease (FOG)	Transesterification, hydroprocessing


12

Biocarbon Sinks (Stabilization)

- Geological sequestration of CO₂
- Geological sequestration of bio-oil
- 3. Soil sequestration of biochar

4. Long lived products

Near-Term BiCRS Bioproducts

- Bioenergy
- Bioplastics
- Biochar
- Fiber products

Bioenergy

Bioproducts:

- Hydrogen
- Alcohols
- Heat & power
- Methane
- Liquid hydrocarbons

Biocarbon sinks:

- Geological sequestration of CO₂
- Biochar sequestration in soil

BiCRS potential:

~5.0 GtCO₂ per year (upper limit)

Photosynthesis: $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$

Combustion: $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + heat$

Gasification: $C_6H_{12}O_6 + 3O_2 \rightarrow 6CO_2 + 6H_2$

Pyrolysis: $C_6H_{12}O_6 \to 4CO + 4H_2 + 2H_2O + 2C$

Fermentation: $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$

Anaerobic digestion: $C_6H_{12}O_6 \rightarrow 3CH_4 + 3CO_2$

Hydroprocessing: $C_6H_{12}O_6 + 7H_2 \rightarrow C_6H_{14} + 6H_2O$

Bioplastics

Bioproducts:

- Biodegradable bioplastics
- Non-biodegradable bioplastics

Biocarbon sinks:

Long lived products (non-biodegradable)

BiCRS potential:

~2.0 GtCO₂ per year (upper limit)

Petroplastics → Bioplastics → BiCRS?

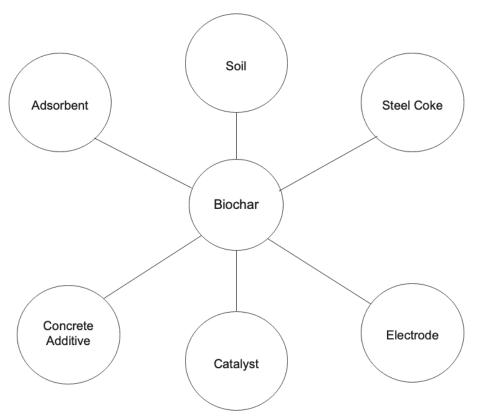
Current production of plastics: 380 million tonnes per year

- ~ 285 million tonnes of carbon
- ~ 1 billion tonnes of CO₂

2050 production of plastics: 1 billion tonnes per year

- ~ 750 million tonnes of carbon
- ~ 2.75 billion tonnes of CO₂

Bioplastics


Bioplastics represent < 1% of total plastics

~36% of bioplastics are non-biodegradable

Bio-based/Non- biodegradable	% of Total	Biodegradable	% of Total
PE	9.5	PBAT	19.2
PA	9.1	PLA	18.9
PTT	8.1	Starch Blends	16.4
PET	6.2	PBS	3.5
PP	1.9	Cellulose Films	3.2
Other	1.0	PHA	1.8
PEF	0.0	Other	1.2

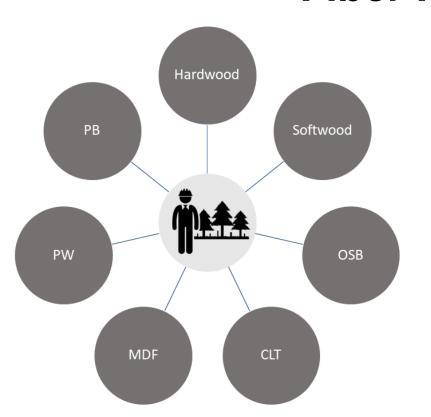
Biochar

Biocarbon sinks:

- Soil sequestration of biochar
- Geological sequestration of bio-oil
- Long lived products

BiCRS potential:

• > 2 GtCO₂ per year


Biochar

Pros	Cons
Reduction in runoff	Potential leaching of heavy metals and polycyclic aromatics
Decrease in soil organic carbon priming	Efficacy dependent on many variables
Potential for high carbon permanence	Relatively expensive
Reduction in N ₂ O emisions	Lack of robust LCA data
Increase in crop yields when applied at appropriate dosages	Decrease in crop yields when applied at excessive dosages

Fiber Products

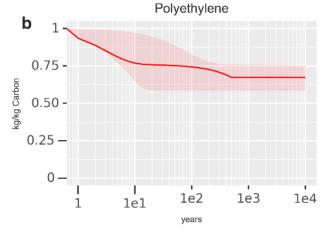
Biocarbon sinks:

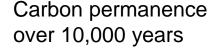
Long lived products

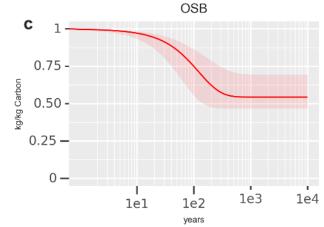
BiCRS potential:

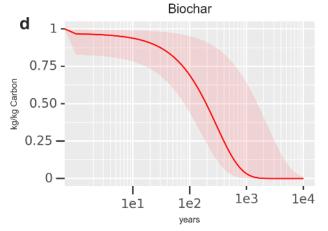
• > 0.5 GtCO₂ per year

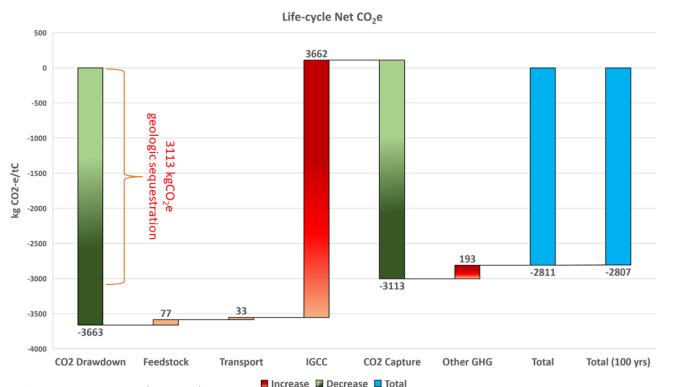



Fiber Products


- In the US, > 100 million tonnes of CO₂ are removed and incorporated into wood products each year
- Most lumber products store > 50% of their carbon for at least 100 years
- In the US, the pulp and paper industry emits ~115 million tonnes of biogenic CO₂ each year




Biocarbon Stabilization



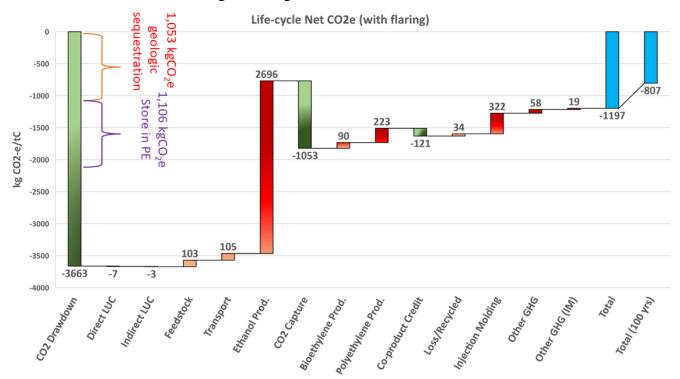
Soil/OnshoreWater/OffshoreOnshore poorly regulated

Dees et al. 2022 (in prep)

Case Study: Bioelectricity from Switchgrass with CCS

77% of biologically fixed carbon contributes to removal for at least 1,000 years

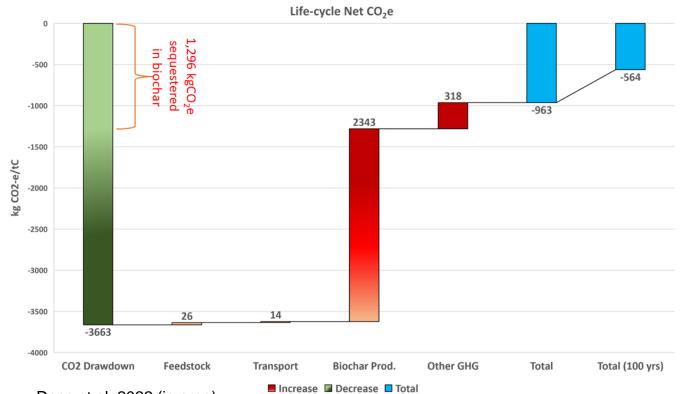
70% for at least 10,000 years


While also providing value via hydrogen gas

Dees et al. 2022 (in prep)

25

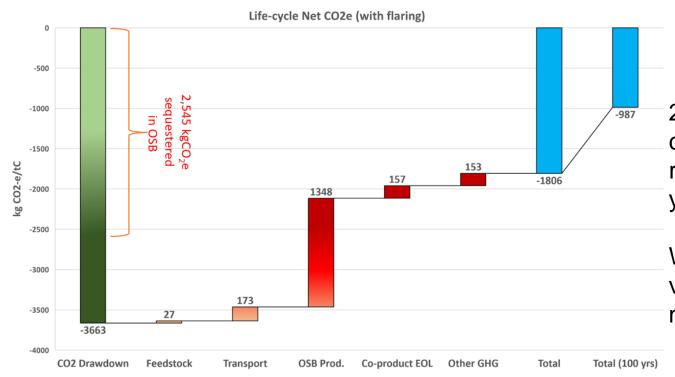
Case Study: Polyethylene from Corn Stover with CCS



22% of biologically fixed carbon contributes to removal for at least 100 years

While also providing value via polyethylene plastic

Case Study: Biochar from Forest Residue



15% of biologically fixed carbon contributes to removal for at least 100 years

While also providing value via soil health enhancement

Case Study: Oriented Strand Board (OSB) from Forest Residues

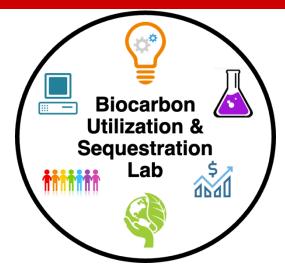
27% of biologically fixed carbon contributes to removal for at least 100 years

While also providing value via construction materials

Dees et al. 2022 (in prep)

■ Increase ■ Decrease ■ Total

Low TRL BiCRS Products & Sinks


- Microbial assimilation of biogenic CO₂ into bioproducts
- Methane pyrolysis for hydrogen and graphite/carbon black
- Biocoke reductant in steel refining
- Biochar additive in concrete
- Mineralization of biogenic CO₂ into carbonate materials
- Deep ocean sequestration of macroalgae
- Bioenergy-driven direct air capture

Conclusions

- <u>Near-term</u> opportunities to leverage the bioeconomy for carbon drawdown via BiCRS
- Biocarbon sources: vary depending on region and conversion pathway
- Biocarbon conversion: pyrolysis, gasification, combustion, anaerobic digestion, and fermentation
- Bioproducts: bioenergy, biochar, bioplastics, and fiber materials
- Biocarbon sinks (stabilization): geological sequestration of CO₂, geological sequestration of bio-oil, biochar soil sequestration, and long lived products

Acknowledgements

- Roger Aines, LLNL
- Jennifer Pett-Ridge, LLNL
- Sarah Baker, LLNL
- John Dees, UC Berkeley
- Dan Sanchez, UC Berkeley
- Wengin Li, LLNL
- Hannah Goldstein, LLNL
- Mark Wright, ISU
- Matt Langholtz, ORNL
- Ingrid Busch, ORNL
- Sunkyu Park, NCSU
- Ethan Woods, NCSU
- Nicolas Clauser, NCSU